National
OceanographyPe
Se
Centre

Permanent Service for Mean Sea Level

UPDATE: IAPSO BEST PRACTICE STUDY GROUP ON TIDAL ANALYSIS

Andrew Matthews GLOSS GE XVIII 11-14 March 2025

National Oceanography Centre

Calls issued every two years

Provides funding for a several day meeting

Consensus should be sought regarding the pros and cons of different techniques

Ideally this will result in a short technical guideline that will assist researchers in making the best choices in e.g. analysing data

Recommend https://www.oceanbestpractices.org/

National Oceanography Centre

See https://iapso-ocean.org/activities/best-practice-study-groups.html

- Best Practice Study Group on moored CTD measurements (2020-2021, extended to 2022)
- Best Practice Study Group to identify approaches to be recommended for seawater pH measurement (2020-2021, extended to 2022)
- Best Practice Study group on Tidal Analysis (2022–2023)
- Best Practice Study Group for the systematic evaluation of mapping methods in reconstructing ocean heat content and thermosteric sea level (2022-2023)
- Best Practice Study Group on calibrating measurements of total dissolved inorganic carbon in seawater (2023-2025)
- Best Practice Study Group on ship based CTD/O2 operations, calibration, and processing procedures (2023-2025)
- Best Practice Study Group on reconciling cross-platform observations of ice-shelf melt (2023-2025)

An attempt to write a best practice document for tidal analysis

Not a comprehensive study of the science

More a practical guide

IAPSO funded meeting at the end of 2023

Will be submitted to <u>www.oceanbestpractices.org</u>

Plans for translations with support of IOC

Google drive with several documents – email antt@noc.ac.uk

Meeting report – IAPSO deliverable

First draft ("Chapter 1")

Example constituent sets

List of tidal software

EXAMPLE CONSTITUENT SETS

Duration of data	Number of	Comments
(not inc. gaps)	Constituents	
1 – 10 days	1	M ₂ only
15 days	4	M_2 , S_2 , O_1 , K_1 only
		can potentially generate more however it would involve
		missing out some of the key constituents (such as N_2
		and K_2) and therefore probably of little value. May be of
		value in quality controlling data but not for future tide
		table production.
15 days	15	Msf, 2Q ₁ , O ₁ , K ₁ , OO ₁ , Mu ₂ , M ₂ , S ₂ , M ₃ , M ₄ , MS ₄ , S ₄ , M ₆ , 2MS ₆ , 2SM ₆
		Use with caution for tidal prediction as N_2 can't be
	14 if Msf excluded	separated from M_2 with only 15 days of data.
30 days	26	$\begin{array}{l} Mm, Msf, Q_1, O_1, M_1, K_1, J_1, OO_1, Mu_2, N_2, M_2, L_2, S_2, \\ 2SM_2, MO_3, M_3, MK_3, MN_4, M_4, SN_4, MS_4, 2MN_6, M_6, \\ MSN_6, 2MS_6, 2SM_6 \end{array}$
	24 if Mm and Msf excluded.	Use with caution for tidal predictions as K_2 is not included. It is better to infer K_2 from S_2 , than leave it out altogether.

EXAMPLE CONSTITUENT SETS – EXCEL SUMMARY

	А	В	С	D	E	F	G	Н	I.	J	K
1	Name	Speed (degrees per hour)	1-10 day	15 days	15 days	30 days	30 days	6 months	12 months	4.5 years	10+ years
2	SA	0.0410686	n	n	n	n	n	n	У	у	У
3	SSA	0.0821373	n	n	n	n	n	у	У	у	У
4	MM	0.5443747	n	n	n	?	?	у	У	У	У
5	MSF	1.0158958	n	n	?	?	?	у	У	У	У
6	MF	1.0980331	n	n	n	n	n	у	У	У	У
7	2Q1	12.8542862	n	n	у	n	n	у	У	у	У
8	SIG1	12.9271398	n	n	n	n	n	у	У	у	У
9	Q1	13.3986609	n	n	n	У	у	у	У	у	У
10	RHO1	13.4715145	n	n	n	n	n	у	у	у	У
11	01	13.9430356	n	у	У	У	у	У	У	У	У
12	MP1	14.0251729	n	n	n	n	n	У	У	У	У
13	M1	14.4920521	n	n	n	У	У	У	У	У	У
14	CHI1	14.5695476	n	n	n	n	n	у	У	У	У
15	PI1	14.9178647	n	n	n	n	i	n	У	У	У
16	P1	14.9589314	n	n	n	n	i	у	У	У	У
17	S1	15	n	n	n	n	n	n	У	У	У
18	K1	15.0410686	n	у	У	У	У	у	У	У	У
19	PSI1	15.0821353	n	n	n	n	i	n	У	У	У
20	PHI1	15.1232059	n	n	n	n	i	у	У	У	У
21	TH1	15.5125897	n	n	n	n	n	у	У	У	У
22	J1	15.5854433	n	n	n	У	У	У	У	У	У
23	SO1	16.0569644	n	n	n	n	n	y	У	У	У

SOFTWARE LIST

Harmonic Analysis

Name and link	Language	Notes
IOS Tidal Package (Foreman)	FORTRAN 77	
<u>vtide</u>	FORTRAN	Another implementation of Foreman's improved versatile harmonic tidal analysis, recommended by Luca Repetti (Italian Hydrographic Institute)
t <u>tide</u>	MATLAB	A reimplementation of the Foreman package using MATLAB
utide (MATLAB)	MATLAB	Builds on the Foreman and t_tide packages - original MATLAB version

Fitting 54 constituents to 1 month of data

Rayleigh criteria suggests you need 6 months

National Oceanography Centre

EXAMPLES – USING TOO MANY CONSTITUENTS #2

National Oceanography Centre

DIFFICULT COASTLINES TO MODEL WITH CLASSICAL HARMONICS

King's Lynn South Quay Tide Gauge in Green, Predictions in Blue

By Goran_tek-en, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=145917154

Papenburg, Germany

WHY ARE YOU DOING THE TIDAL ANALYSIS?

The Disney Treasure at the Meyer Werft shipyard in Papenburg By HIHIMOINMOIN1 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=155118411 October 17, 2016 tidal flooding on a sunny day, during the "king tides" in Brickell, Miami that peaked at 4 ft MLLW By B137 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=52334453

Needs sections on:

- Satellite data
- Model data
- Analysis of currents
- Techniques other than harmonic analysis
- Third-degree tides
- Tidal analysis metadata

Image courtesy of Michael Hart-Davis, DGFI-TUM

M2 constituent Annual fits to Newlyn, UK without accounting for nodal cycle

BACKGROUND ON WHERE THE CONSTITUENTS COME FROM

National Oceanography Centre

How do we get from 6 astronomical cycles to 115+ constituents?

Examples:

- Different software
- Different difficult scenarios

Any other good ideas you've got!

