

The Tsunami Early Warning at Stromboli Volcano M. Ripepe & G. Lacanna

Stromboli Volcano

«Sciara del Fuoco» (The Slope of Fire) is a 35° unstable slope

The Reason for TEWS: the 28 Dic. 2002 Tsunami

~10 Mm³ of flank collapse generated a 10 m tsunami wave and ~200 m of inundation

Potential Collapse of ~1000 Mm³

Sector collapses occurred also during Roman age and involved volumes of 10⁹-10⁸ m³

Last partial Sector Collapse ~700 years ago

Geological deposits indicate three partial flank collapse of ~200 x 10⁶ m³ in 1300-1400 producing damages and victims in Gulf of Naples at 230 km from Stromboli

Tsunami Arrival Time

Tsunami would reach the coast of Stromboli in <~4 min ~5000 people are exposed to the tsunami risk during summer time

Tsunami Arrival Time

The Tsunami Early-Warning System

The system infrastructure is based on two elastic beacons

Modelling tsunami in near-field: NHWAVE

Submarine (15x10⁶ m³) and Aerial (6x10⁶ m³) collapse

Periods of Tsunami range between 50 and 100 seconds

Aerial are more effective than submarine in generating tsunami

The Tsunami Gauges

Tsunami waveforms and Slide Volumes

Submarine and aerial landslide with volumes between 4 and 35 Mm³

Tsunami waveforms do not change with volumes We can use modelled waveform to «train» the detection algorithm

Detection Algorithm is based on STA/LTA ratio

The STA/LTA >20 detects tsunami few seconds after the onset up to 180 s period

Sensitivity of the STA/LTA ratio threshold

The STA/LTA >20 detects tsunami independently on sea conditions which introduces a detection delay of only 6 s

Tsunami Early-Warning Flow Chart

Alert is issued when The STA/LTA >20 at both gauges

The 3 July Tsunami by Plume Collapse

Plume height 8.4 km Mass rate 10⁶ kg/2 Volume 3.5x10⁵ m³

Giordano & De Astis, Bull. Vol, 2021

Reaction Time of the EW tsunami

Tsunami was recorded 60 seconds after the explosive eruption Alert issued 15 secondi after the onset and 75 s after the explosion

Stability of the Tsunami waveforms

Tens of Tsunamis of 4-150 cm with different source location and dynamics have been recorded in the last 4 years)

Stability of the Tsunami waveforms

Similar Waveform of Tsunami calculated with NHWAVE for a landslide and in spite of the ~2 order amplitude difference and different source parameters

Tsunami height and slide volume correlation

Numerical (black dots) and Empirical (Block and Granular) modells shows a Linear correlation between Tsunami height and slide volume

Inundation scenario can be calculated «a-priori»

Conclusion and/or Suggestions:

- Volcano generate tsunami with periods (50-200 s) shorter than earthquake
- 1. Tsunami gauges deployed in deep water (>300 m) will be no-sensitive.
- 2. The record of volcano-tsunami, requires at least 1 Hz sampling rate

- Tsunami Source is generally close to populated area (<10 min)

- 1. Alert should be issued automatically with no human supervision
- 2. Detection algorithm should 'react' as prompt as possibly (within seconds)

- Tsunami Waveforms for the same Volcano are Stable

- 1. Numerical waveforms can be used to 'train' the detection algorithm
- 2. Linear relationship between volume and amplitude can be found
- 3. A-priori inundation scenarios should be used to estimate possible impact in real-time