I onga tsunami generation by air pressure waves and impact in the far-field

Vasily Titov NOAA Center for Tsunami Research Pacific Marine Environmental Laboratory https://nctr.pmel.noaa.gov

The initial atmospheric response to the eruption was captured by Mathew Barlow using NOAA's GOES-West satellite infrared radiance data (band 13). This sequence is based on images taken 10 minutes apart, and colors show the difference in infrared radiance between each time step. Credit: Mathew Barlow/University of Massachusetts Lowell. @MathewABarlow - Environmental, Earth, and Atmospheric Sciences - University of Massachusetts Lowell

Mark Boslough¹, Sergiy Vasylkevych², Nedjeljka Žagar² ¹Los Alamos National Laboratory, New Mexico, USA ²Universität Hamburg, Germany

DART records tsunami across the Pacific

Time since EQ (hr)

Comparing Two Types of Tsunamis Generated by Pressure-forcing

Proudman Amplification

Air blast over deep water

Meteo tsunami over shallow water

13 June 2013 meteotsunami event

Pressure Forcing

Temperature (K)

Maximum Wave Amplitude

Larger area

20

Wave Amplitude

Time: 1.00000

0.00	0.01	0.02	0.03	0.04	0.05			
		Data Min = 0.0	00, Max = 0.01					

Larger area

Wave Amplitude

Time: 1.00000

Tsunami Amplitudes

Pacific propagation

Air Pressure Wave (Gaussian dipole)

Global Impact

Pressure anomoly Tsunami amplitudes

Global Tsunami Amplitudes

0.1 m

Global Tsunami Amplitudes

Proudman Amplification for Tonga Explosion

$$\eta = \frac{c^2 \eta_s}{c^2 - U^2} = \frac{\eta_s}{1 - F^2}$$

Summary and Issues

- ✓ Forecast of pressure-driven tsunami is quite important
- Modeling framework exist to simulate pressure-forced tsunamis
- ✓ Real-time data is available for constraining models for forecast

Combining these existing capabilities into functioning forecast is an immediate challenge for TWSs

Maximum Computed Tsunami Amplitudes

0.00	0.02	0.04	0.06	0.08	0.10
	r	Note $Min = 0.00$ Max	-110 Moop -0.02		

Science Issues

- What is the mechanism of Lamb wave generation?
- How do Lamb waves scale with magnitude?
- What is the source of the local tsunami impact?
 - cavity formation from the explosion
 - explosion shock waves
 - caldera collaps
 - slope mass failures
 - collapse of eruptive column
 - combination of above

Maximum Computed Tsunami Amplitudes

0.00	0.02	0.04	0.06	0.08	0.10
	r	Note $Min = 0.00$ Max	-110 Moop -0.02		