

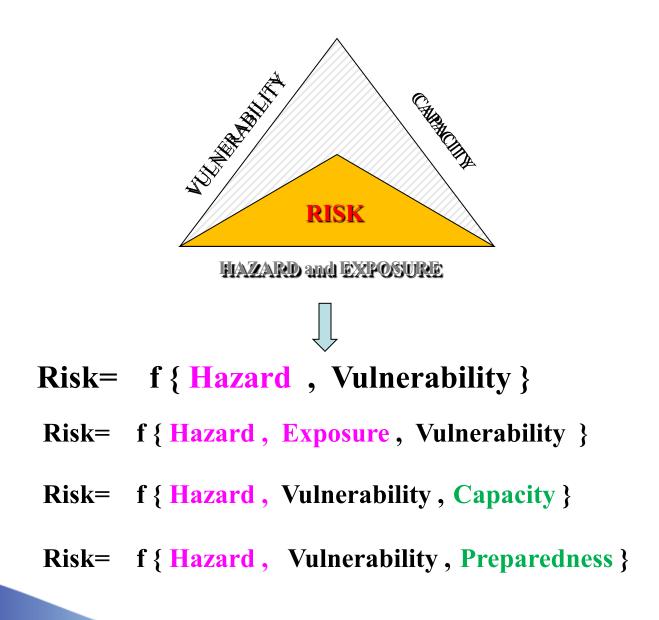
Indian Ocean Tsunami Ready Workshop 22-26, November 2022 Organized and supported by UNESCO-IOC IOTIC, UNESCO-IOC ICG/IOTWMS Secretariat, UNESCAP, and BMKG



# Coastal communities at risk of tsunami impacts need to be ready

# Padmanabham

Scientist-E Indian National Center for Ocean Information Services (INCOIS) padmanabham@incois.gov.in




# Outline

- 1. Risk Function and definitions
- 2. Risk Assessment for Tsunami Hazard
- 3. Tsunami Preparedness and response
- 4. Capacity Building



# **Risk Assessment**





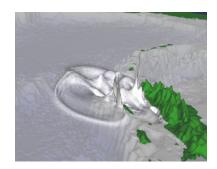
**<u>Hazard</u>** represents the possibility of occurrence of a natural/man made event of a probable magnitude or intensity that includes a specific geographic area. Each hazard is characterized by its location, intensity and probability.

**Exposure** reflects the geographical area, human life, ecosystems and infrastructure which can be potentially affected by the hazard.

**<u>Vulnerability</u>** represents the proneness of society and its full structure to be affected by the hazard.

<u>**Capacities</u>** focus on group measures that are in place to help the community to cope with the event.</u>

**Deficiencies in Preparedness** represent the lack of measures and tasks which could reduce the loss of human lives and property during disaster.



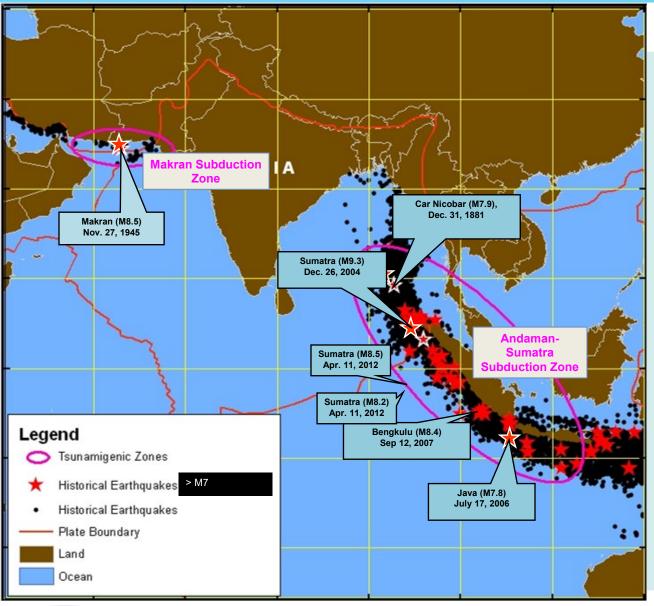

# Disaster- Hazard impact on land





# Hazard event within the broader hazard zone






ÎISI

Vulnerability

# Exposure

## **Potential Tsunamigenic Zones**





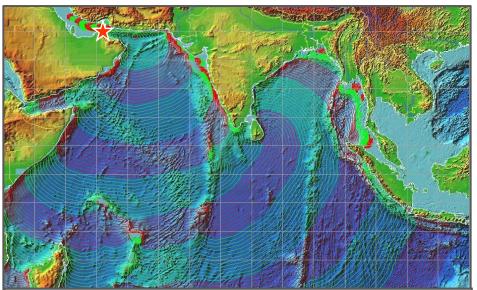
Tsunamis are primarily caused due to large undersea Earthquakes.

For a tsunami to hit Indian coast, it is necessary that a tsunamigenic earthquake occurs and its magnitude should be larger than M 7. Possible locations of such events are enclosed in ellipse

Earthquakes with Slow Rupture Velocities are most efficient Tsunami Generators

75% of earthquake energy is released in the circum-Pacific belt – 900 Tsunamis in 20<sup>th</sup> Century

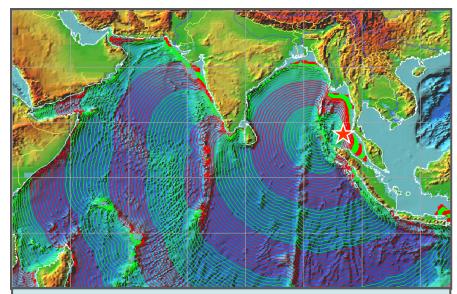
20% in the Alpine-Himalayan belt – 6 Tsunamis in 20th Century


Historical Tsunami in India 12 Apr, 1762 (BoB EQ) – 1.8 M 31 Dec, 1881 (Car Nicobar EQ) 27 Aug, 1883 (Krakatoa) – 2 M 26 Jun, 1941 (Andaman EQ) 27 Nov, 1945 (Makran EQ) – 12 M 26 Dec, 2004 (Sumatra EQ)

Landslides, Volcanoes & Meteor Impacts can also generate Tsunamis

# **Tsunami Risk Assessment for India**

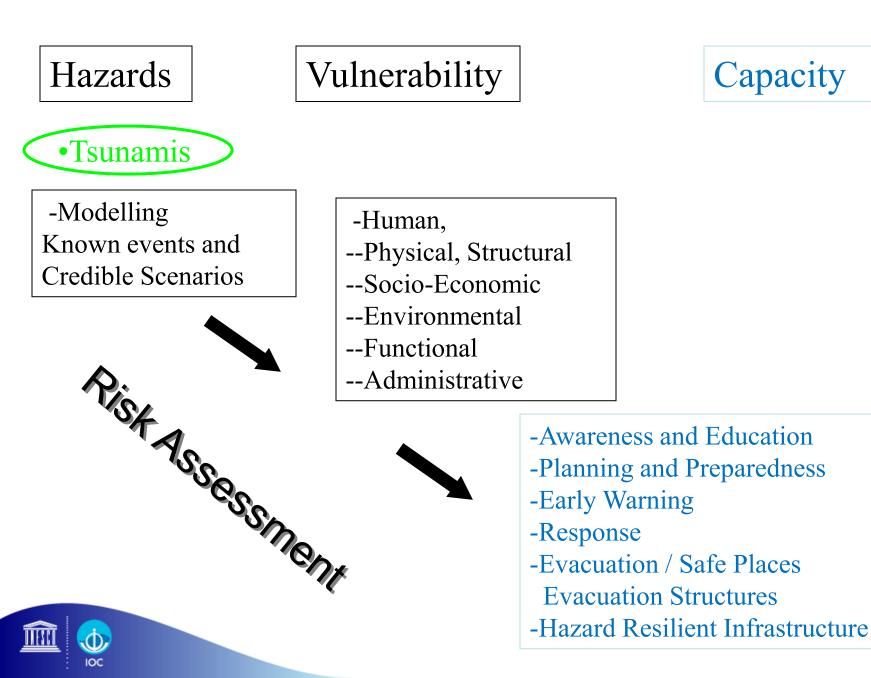
#### Tsunami Travel Times & Response time


- Depending upon the Earthquake location (Makran/Andaman-Sumatra Subduction Zone) the response time for evacuation of coastal population could range between 10 min to few hours.
- As Andaman & Nicobar Islands situated right on subduction zone the available response time is very short



**Makran Subduction Zone** 

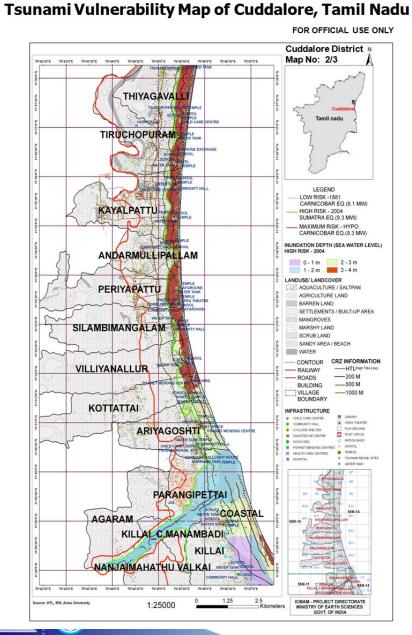
• If Earthquake occurs at Makran Subduction zone, Travel Time to nearest Indian Coast (Gujarat) are 2 to 3 hrs

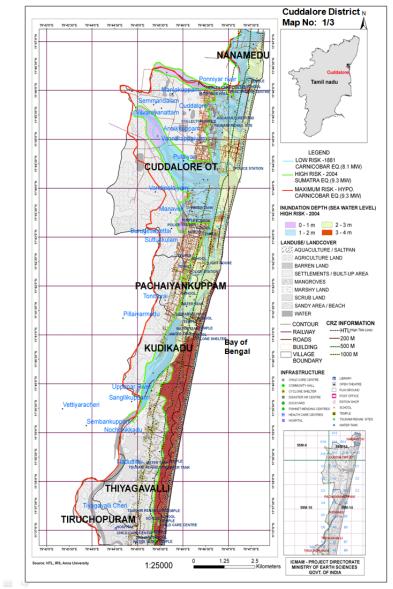

#### Andaman-Sumatra Subduction Zone



- If Earthquake happens at Nicobar Islands , travel times to nearest coast (A&N Islands) are 20 to 30 min
- For Indian main land travel times are 2 to 3 hrs

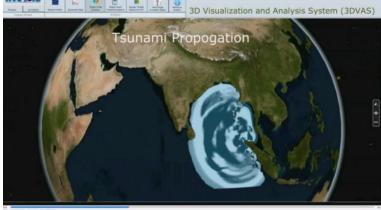



#### **Risk Assessment for a given hazard**




#### Tsunami Vulnerability Map

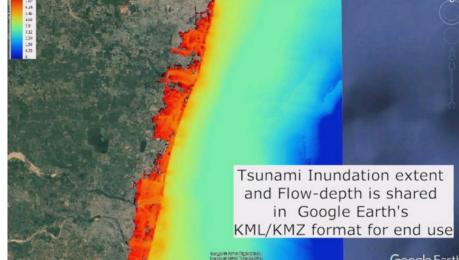
#### Tsunami Vulnerability Map of Cuddalore, Tamil Nadu


FOR OFFICIAL USE ONLY





#### Courtesy: NCCR, Chennai


# Inundation Modelling and risk assessment in 3DVAS





Model setup, propagation and inundating modeling, Overlay of the modeling results and risk assessment at building level and generation of outputs

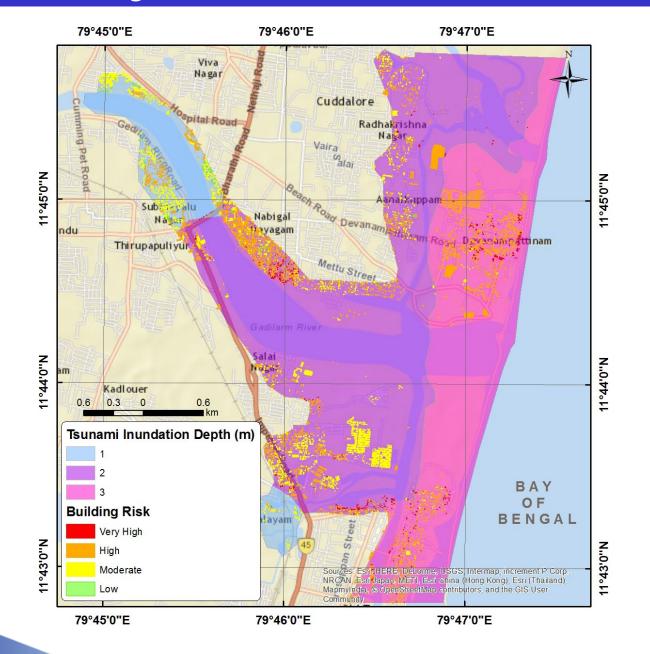




Google Earth

# **3D GIS Mapping**




#### Building Risk Rate for different input parameters

| Sl | Parameters                 | Risk Rate          |        |                        |                  |                                   |
|----|----------------------------|--------------------|--------|------------------------|------------------|-----------------------------------|
|    |                            | 1                  | 2      | 3                      | 4                | 5                                 |
| a  | Age of Building<br>(years) | 10                 | 10-15  | 15-20                  | 20-25            | >25                               |
| b  | Construction type          | Pukka              |        | Moderate               | Kutcha           | Hut                               |
| c  | Wall type                  | Brick<br>plastered | Brick  | Earth blocks plastered | Earth blocks     | Plastic, Grass,<br>Coconut Leaves |
| d  | Roof type                  | Concrete           | Tiles  | Asbestos               | Tin              | Plastic, Grass,<br>Coconut Leaves |
| e  | Foundation type            |                    |        | Pillar                 | Earth Fill       | No Foundation                     |
| f  | No of storey               | >4                 | 4      | 3                      | 2                | 1                                 |
| g  | Total no of<br>Persons     | 1                  | 2-3    | 3-4                    | 4-5              | >5                                |
| h  | Population type            | Male               | Female | Child (<12y)           | Senior<br>(>60y) | Both child and senior             |
| i  | Tsunami Run-up<br>(m)      | <1                 | 1-2    | 2-3                    | 3-4              | >4                                |
| J  | Elevation (m)              | >4                 | 3-4    | 2-3                    | 1-2              | 1                                 |

Socio-economic risk index = sqrt (a\*b\*c\*d\*e\*f\*g\*2h\*2i\*j\*)/10



## Building Level Tsunami Risk Assessment





#### People centric Tsunami Preparedness & Response

#### Tsunami Ready Programme

 IOC-UNESCO Tsunami Ready Programme is a community performance based programme to strengthen tsunami preparedness of coastal communities through a structural and systematic approach

#### > SOP Workshops

 For DMOs to build their own SOPs detailing actions to be taken upon receipt of bulletins from the warning centre

#### Tabletop Exercises

 To stimulate the development, training, testing and evaluation of Emergency Response Plans, SOPs and assess procedures followed (Conducted in a conference room environment)

#### Mock Drills

IOC

• Full scale mock Tsunami Drill to evaluate and improve the effectiveness of SOPs of TWC and DMOs, in responding to a potentially destructive tsunami

#### Communications Tests (Comms Test)

 To validate the dissemination and reception processes of advisories in all possible communication modes and to determine transmission times of messages

#### World Tsunami Awareness Day

05 November is recognized as World Tsunami Awareness Day by UNESCO

# **Capacity Building**

- Workshops, seminars, Trainings (national & international), Exhibitions
- Capacity building to public (especially in near-source vulnerable coastal areas) on responding to earthquakes & tsunami warnings
- Capacity building to coastal administrators, disaster management officials and public on SOPs, use of tsunami inundation maps, etc.
- > Include disaster awareness and response related topics in primary, secondary and high school curriculum.
- Awareness activities on World Tsunami Awareness Day on 05 November



Thank you

