

UNESCO/IOC – NOAA ITIC Training Program in Hawaii (ITP-Hawaii)

TSUNAMI EARLY WARNING SYSTEMS

AND THE PACIFIC TSUNAMI WARNING CENTER (PTWC) ENHANCED PRODUCTS

TSUNAMI EVACUATION PLANNING AND UNESCO IOC TSUNAMI READY PROGRAMME

What do TERs do with TWC information? Challenges in Alerting, Evacuation and Safe to Return

Dr. Laura Kong

International Tsunami Information Center

Outline

- Roles and Responsibilities
- Alerting
- Evacuation
- □ Cancellation and All-Clear
- Measuring Success

Tsunami Emergency Response (TER)

- □ TER: Race Against Time!
- □ Goal: Save lives.
 - Reduce property damage.
- Must: Act FAST without confusion.
- Notes:
 - Tsunamis may (or may not) cause damage. May be "Destructive" or "Non-Destructive"
 - Non-destructive tsunamis are small, but measurable on sea level gauges.

TER Expectations

Key Question:

Has a destructive tsunami been generated? Yes or No?

Tsunami Decision-Making Environment:
TER want "black & white => Yes or No answer"

YES NO

TWC operate in "shades of grey color"

Tsunami Warning Center (TWC)

TWC: "eyes and ears" are earthquake and tsunami detection instruments.

Limitations include:

- Lack of timely data.
- Lack of time to analyze data before wave impact.

Result =>

TWC may not be able to confirm existence of local destructive tsunami prior to official TER evacuation decision making.

TWC provide – Local Tsunami

- Preliminary analysis: There is "potential" of a destructive tsunami.
- At time of official evacuation decision making:
 - Likely NO confirmation of intensity of tsunami waves.
 - Local Warning issued based only on seismic data.

Warning Center: Science, Technology, Prediction

Emergency Operations Center:
Public Safety Advisory
Lives saved, Damage less

TER – Alerting Requirements

- 4 R's: Robust, Reliable, Redundant, Ready
- Wide Accessibility
- Speed
- Accurate and reliable
- Live updates
- 24/7
- Skilled Human Resources
- Established Infrastructure
- Established Broadcasting SOP
- Experience in Breaking News
- Provide Guidance

Alerting Example – Hawaii EAS Radio/TV

Last man undate: Sat. Oct. 27, 2012 at 8:09:03 pm HST

Alerting - Challenges

- Utility and communications systems disrupted or destroyed due to earthquake
- Areas where electricity is scarce
- Time of day (night people are sleeping TV/radio off)
- Communication system overloaded

Tsunami Evacuation

Modeling → Inundation → Evacuation map map

Tsunami evacuation maps are community-owned

Evacuation - Challenges

Distant & Local tsunami responses:

- Day time or night time
- People awake or asleep
- Regular business / school hrs vs. non-duty hrs
- Weekday vs. weekends
- Tourist Peak vs. Off-season
- Traffic jams and rush-hour periods
- Television and radio stations off-air
- Little to no response personnel available to support evacuation (during local tsunami)

Evacuation Problems?

Issues:

- No high ground
- No time to go inland
- Special needs populations

Solution:

Vertical evacuation

Evacuation Siting, Spacing, and Sizing

Warning	Ambulatory	Travel Distance**	Required
time	Speed*		Spacing
> 2 hrs	3.2 km/hr (1 m/s)	6.4 km	12.8 km
	2 mph	4 miles	8 miles
30 min	3.2 km/hr (1 m/s)	1.6 km	3.2 km
	2 mph	1 mile	2 miles
15 min	3.2 km/hr (1 m/s)	0.8 km	1.6 km
	2 mph	0.5 mile	1 mile

^{*} Assumed average speed of mobility-impaired population

^{**} Must allow time for vertical circulation within refuge

Vertical Evacuation - costs

- Structural costs higher
- Structural only a portion of total building costs (5% to 40%)
- Tsunami-resistant structures estimated 10% to 20% increase in total constructions costs

From ATC-64 Design and Construction Guidance for Vertical Evacuation from Tsunami

Evacuation Simulation – Owase, Japan

Delay in Alert or Evacuation => more deaths

Immediate Evacuate

20-min delay to Evacuate

T. Katada, Gunma Univ

TWC Cancellation versus All-Clear

- Cancellation Message issued by TWCs
 - Officially cancels warning, watch, and advisory messages
 - Means that destructive waves have stopped in areas that can be monitored by the TWCs
 - Does not mean it is safe to return to Tsunami Hazard Zone
- Official All-Clear issued by local authority when it is safe to re-enter the Tsunami Hazard Zone

TER – Safe to Return (All-Clear)

- Tsunami is a series of waves striking coastline for hours
- Resonance in bays / harbors
- Debris (floating)
- HAZMAT spills
- Additional earthquake damage
- Who declares "All-Clear"? National/Provincial/Local TER...?

Evacuation Decision affects TWS Credibility

ACTION	RESULT	PERFORMANCE
Official Evacuation	Destructive Tsunami	Successful TWS
No Official Evacuation	Non-destructive Tsunami	Successful TWS
Official Evacuation	Non-destructive Tsunami	TWS limitation - Credibility Downgraded
No Official Evacuation	Destructive Tsunami	Failed TWS

Note: There will be public criticism if alert notifications took too long to reach people on the coastline, or people not notified at all.

Hawaii example: Cost of "False warning"

Pacific-wide Tsunami Warnings Issued Sirens sounded, Statewide evacuations

BUT small, non-destructive tsunamis

1986 - mid-afternoon to pm rush hour
 1994 - early morning to am rush hour

Losses

(DBEDT Study) => \$50M (extrapolated) => \$30M (extrapolated) => \$68M

Media reports shape public opinion

Achieving Successful Outcomes

- Disclose "End-to-End" TWS limitations beforehand to Stakeholders (agencies, key decision-makers at National / **Provincial / Local levels)**
- Convene Press Conference shortly after Warning cancellation to explain what happened and how official evacuation decisions determined.

Improving Tsunami Response

Community-level focus / customize outreach:

- Know tsunami natural warning signs
- Have evacuation maps
- Know evacuation routes/assembly areas
- Have community support network
- Have family plan and preparedness kit
- Know response for local and distant tsunamis
- Know community warning system

How to Improve Tsunami Response

Exercises Drills

- Drill evacuation of schools and communities
- Exercise communications protocols
- Exercise all levels of government

UNESCO/IOC – NOAA ITIC Training Program in Hawaii (ITP-Hawaii)

TSUNAMI EARLY WARNING SYSTEMS

AND THE PACIFIC TSUNAMI WARNING CENTER (PTWC) ENHANCED PRODUCTS

TSUNAMI EVACUATION PLANNING AND UNESCO IOC TSUNAMI READY PROGRAMME

Thank You

Dr. Laura Kong

International Tsunami Information Center