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Since the speed of sound in water is much greater than that of the surface gravity
waves, acoustic signals can be used for early warning of tsunamis. We simplify
existing works by treating the sound wave alone without the much slower gravity
wave, and derive a two-dimensional theory for signals emanating from a fault of
finite length. Under the assumptions of a slender fault and constant sea depth, the
asymptotic technique of multiple scales is applied to obtain analytical results. The
modal envelopes of the two-dimensional sound waves are found to be governed
by the Schrödinger equation and are solved explicitly. An approximate method is
described for the inverse estimation of fault properties from the pressure record at a
distant hydrophone.
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1. Introduction
An important task for minimizing the devastation of tsunamis is to establish a

comprehensive and reliable early-warning system. Currently this task is largely based
on the detection of the front of the surface gravity waves by measuring either the
movement of dart buoys or the bottom pressure at many stations in the ocean. Guided
by the key parameters of the fault estimated from seismic observations, these records
are used to supply the initial and boundary conditions for computational models of
hydrodynamics. So far, these operational models are based on the assumptions of an
incompressible fluid, where only gravity is accounted for as a restoring force.

In an ocean of depth h = 4000 m, the phase speed of a tsunami front
p

gh
is approximately 200 m s�1, whereas the speed of sound in water is far greater,
at c = 1500 m s�1. Hence, ideas for earlier detection of tsunamis from the
acoustic forerunner have attracted some attention in the recent past. A number
of authors have studied unidirectional acoustic–gravity waves from an infinitely
long fault by including water compressibility and gravity (Miyoshi 1954; Sells
1965; Kajiura 1970; Yamamoto 1982; Nosov 1999; Nosov & Kolesov 2007;
Chierici et al. 2010; Stiassnie 2010; Kadri & Stiassnie 2013; Kadri & Akylas 2016).

† Email address for correspondence: ccmei@mit.edu
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Sound signals of tsunamis from a slender fault 353

However, all of these cited studies show that sound and gravity waves are virtually
decoupled after a long distance of propagation, due to the disparate speeds. In
particular, Stiassnie derived a simple asymptotic approximation of the leading waves
and showed explicitly that, if the distance between the source and target is great,
sound signals can clearly outrun the gravity waves at the front. For two-dimensional
faults of finite size in a sea of constant depth, Hendin & Stiassnie (2013) reported a
three-dimensional theory of acoustic–gravity waves based on the classical method of
the Green’s function. Contributions from the acoustic and gravity waves were shown
to be expressed by two separate integrals. For an elongated rectangular fault, some
computational efforts were required to evaluate the integral over the area of source
distribution. (For a rectangular fault of 40 km by 800 km, 32 000 discrete elements
of 1 km2 size were needed to compute the far field 1000 km away from the fault.)
They further introduced an ingenious inverse theory to predict major features of the
fault based on data from two remote hydrophones. For two-dimensional bathymetry
and fault area, the mild-slope equation originated for gravity waves has recently been
extended to acoustic–gravity waves by Sammarco et al. (2013) and Abdolali, Kirby
& Bellotti (2015). To cover an area of many wavelengths in each horizontal direction,
a numerical solution requires a huge number of discrete elements much smaller
than a wavelength. Hence, this scheme demands non-trivial computational effort for
trans-ocean sound signals from two-dimensional fault and bathymetry, as is well
known in the case of pure gravity waves. So far these two-dimensional mild-slope
equations have been numerically demonstrated only for a one-dimensional fault and
bathymetry, using 2500 discrete elements (Abdolali et al. 2015).

In this work our objective is to seek alternative theories for cases where the
submarine epicentre is very far from the target region. Since the acoustic precursor
can arrive at a distant target considerably earlier than the gravity waves, it is
mathematically simpler to treat the acoustic and gravity waves separately. Indeed,
we shall show that by focusing on the acoustic effects alone, the front-running part
in Stiassnie’s (2010) theory for a unidirectional tsunami can be quickly recovered.
With this simplification, we find an explicit analytical solution for two-dimensional
sound radiated from a slender fault of finite size.

Since the fault of a submarine earthquake is often slender in shape (see table 1),
the forward (or backward) radiation must differ from that in the lateral directions.
For these cases, approximate three-dimensional analyses are desirable to expedite
the theoretical understanding. In particular, two-dimensional variations in the open
ocean are affected by several much greater length scales, which are sharply different
in the forward and lateral directions. Using this contrast, we start from the acoustic
equations without gravity and show first that, within a distance not too far from the
fault, sound is essentially unidirectional, as predicted by the front-running part of
the acoustic–gravity wave theory of Stiassnie (2010). However, over much longer
distances, the finite size of the slender fault leads to variations of the wave envelope
being evident in both forward and lateral directions. Analytical results for a sea of
constant depth are employed to calculate the sound signal of the tsunami front from
a medium-sized fault to an area thousands of kilometres away. The inverse theory
of Hendin & Stiassnie (2013) is then applied to predict explicitly the main fault
features from recordings at two distant hydrophones. For slowly varying sea depth,
the multiple-scale approximation can be extended to reduce the numerical effort.
The approximate envelope equation for non-uniform but slowly varying sea depth is
outlined in appendix B.

Underwater sound propagation is of course a topic important to the tracking of
ships and marine animals, and in the survey of seabed properties and topography.
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354 C. C. Mei and U. Kadri

Tsunami origin Earthquake duration Fault width Fault length Sea depth
(min) (km) (km) (km)

Chile (1960) 10 200 800 4
Alaska (1964) 10 100 700 4
Indian Ocean (2004) 10 200 1200 4
Tohoku (2011) 6 150 500 3.8

TABLE 1. Key data of some recent tsunamis. The sea depth is approximately 4 km in all
cases above. From the lecture by Philip L.-F. Liu, in Tsunami and storm surges, Valparaiso,
Chile, 2–13 January 2013.

In nature, ocean acoustics should involve other complex factors, such as coastline
reflection and scattering by bathymetric variations (Kadri 2015) and by surface gravity
waves (Brekhovskikh & Lysanov 1991), as well as dissipation by fluid viscosity,
friction on the rough seabed, and through marine sediments (Stoll 1977), etc. In
principle, elastic waves of Rayleigh and Scholte class can exist along the sea floor.
It has been shown by Eyov et al. (2013) that, for monochromatic waves in a sea of
constant depth h over an elastic half-space, the vertical ground displacement is only
O(10�6) times that of the free surface if the frequency is f = 0.167 Hz, corresponding
roughly to the radian frequency of the most energetic acoustic mode !1 = pc/2h for
h = 4 km. These effects are not considered here. For slender faults, modifications of
the present approach to incorporate these additional effects are possible to reduce
future modelling efforts.

2. Governing equations and approximations
We assume the sea water to be slightly compressible. For the dominant acoustic

mode in a sea of depth h, !1 = pc/2h, the viscous damping rate is roughly
O(10�8) dB km�1 if h = 4 km (by extrapolation from Brekhovskikh & Lysanov
(1991) and Denny (1993)). Hence viscosity is negligible and the flow is irrotational,
as is commonly assumed in ocean acoustics. With reference to the coordinate system
defined in figure 1, the velocity potential � of the sound wave is governed by the
standard wave equation

@2�

@x2
+
@2�

@y2
+
@2�

@z2
=

1
c2

@2�

@t2
. (2.1)

On the free surface z = h the atmospheric pressure is assumed to be uniform and taken
to be zero:

� = 0, z = h. (2.2a,b)
On the horizontal seabed z = 0, the ground motion due to seismic rupture is confined
in a rectangular strip of width 2b and length 2L:

@�

@z
= W(x, y, t), |x| < b, |y| < L, z = 0. (2.3)

As a numerical guide, we shall consider a medium-to-large earthquake where the
typical sea depth h = 4 km, and a slender fault of width b = O(10) km and length
L = O(100) km. Hence we assume

b
L

= ✏⌧ 1. (2.4)
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x

Fault

2L

2b

y

FIGURE 1. Coordinates of a slender fault in the horizontal plane.

Owing to reflections from the seabed and the sea surface, many acoustic modes are
generated. The frequency of the fundamental mode can be estimated as !1 = pc/2h
(see (3.9)) where c = 1500 m s�1 is the sound speed in water. Using h = 4 km as an
estimate, we find the corresponding sound wave period to be 10.6 s and wavelength to
be 16 km. To predict trans-ocean propagation of O(1000) km or more, we introduce
multiple-scale coordinates as

x, z; X = ✏2x, Y = ✏y, (2.5)

and rewrite the wave equation as

✓
@2

@x2
+ 2✏2 @2

@x@X
+ ✏2 @

2

@Y2
+
@2

@z2

◆
� =

1
c2

@2�

@t2
, 0 < z < h. (2.6)

Let
� = �0(x, X, Y, z) + ✏2�2(x, X, Y, z) + · · · . (2.7)

The perturbation equations at O(1) describe the two-dimensional physics only,

@2�0

@z2
+
@2�0

@x2
�

1
c2

@2�0

@t2
= 0, 0 < z < h, (2.8)

subjected to the boundary conditions

�0 = 0, z = h (2.9a,b)

and
@�0

@z
=

⇢
W(x, Y, t), |x| < b, |Y| < `= ✏L,

0, elsewhere,
z = 0, (2.10)

where X and Y are only parameters.
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At O(✏2) we have

@2�2

@z2
+
@2�2

@x2
�

1
c2

@2�2

@t2
= �

⇢
@2�0

@Y2
+ 2

@2�0

@x@X

�
, 0 < z < h, (2.11)

with
�2 = 0, z = h (2.12a,b)

and
@�2

@z
= 0, z = 0. (2.13)

3. Leading-order potential �0

For analytical simplicity we assume the ground uplift to be of top-hat form:

@�0

@z
= w(x, Y)⌧ (t), z = 0, (3.1)

where

w(x, Y) =

⇢
W0 = const., |x| < b, |Y| < `,

0, elsewhere,
⌧ (t) =

⇢
1, �T < t < T,

0, |t| > T,
(3.2a,b)

with `= O(✏L) = O(b/✏). By double Fourier transformation

�̄0 =

Z
1

�1

ei!t�0 dt, � =

Z
1

�1

e�ikx�̄0 dx, (3.3a,b)

we readily find

� = �W0
G
µ

sin µ(h � z)
cos µh

, (3.4)

where

W0G(k,!) =

Z
1

�1

e�ikxw(x, Y) dx
Z

1

�1

ei!t⌧ (t) dt = 4W0
sin(kb) sin(!T)

k!
(3.5)

and

µ =

r
!2

c2
� k2, (3.6)

�0 = �
W0(Y)

2p2p

Z
1

�1

d! e�i!t
Z

1

�1

dk eikx G(k,!)

µ

sin µ(h � z)
cos µh

. (3.7)

The inversion can be completed by the standard method of residue calculus, as
sketched in appendix A, with the result

�0 = �
W0

p
Re
Z

1

!N

i d! e�i!t
NX

1

G(kn,!)

knh
sin µn(h � z)

sin µnh
eikn|x|

�
W0

p

Z !N

0
d! cos(!t)

1X

N+1

G(�n,!)

�nh
sin µn(h � z)

sin µnh
e��n|x|, (3.8)

D
:

03
43

7
D

D
D

 2
0

1
83

4 
2

4 
.

,/
81

0
84

42
0

1
42

74
0

1
83

4
4

4
4

0C
08

:0
1:

4
0

7
D

D
D

 2
0

1
83

4 
2

4
4

 7
3

8 
 

 
 

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.811


Sound signals of tsunamis from a slender fault 357

where
µn =

✓
n �

1
2

◆
p

h
⌘
!n

c
, n = 1, 2, 3, . . . (3.9)

is a real zero of cos µh = 0. It follows from (3.6) that

kn =

p
!2 �!2

n

c
(3.10)

is real if !2 >!2
n. Let !N be the largest !n satisfying this inequality; then only k1 >

k2 > · · · > kN are real. If, on the other hand, !2 <!2
N , kn = i�n is imaginary, with

�n =

p
!2

n �!2

c
, n = N + 1, N + 2, . . . and �N+1 < �N+2 < · · · . (3.11)

The bottom pressure is given by the linearized Bernoulli equation,

p = �⇢
@�0

@t

����
z=0

= �⇢
W0

p
Re
Z

1

!N

! d! e�i!t
NX

1

G(kn,!)

knh
eikn|x|

+ ⇢
W0

p

Z !N

0
! d! sin(!t)

1X

N+1

G(�n,!)

�nh
e��n|x|. (3.12)

In (3.8) and (3.12), the first series represents the propagating modes, whereas the
second corresponds to evanescent modes that decay exponentially with distance and
is not important far from the source. Note that (3.8) and (3.12) are exact, but can
only describe the physics in the small neighbourhood of O(x, y)6 b. For trans-ocean
application, an improvement for the study of long-distance evolution must now be
found.

4. Improvement for long-range modulation
Let us consider the region x > 0 far away to the right of the fault. Anticipating

that the propagating modes have slowly varying envelopes, we introduce unknown
envelope factors A±

n (X,Y) and rewrite (3.8) as

�0 = �
W0

2p

(Z
1

!N

i d! e�i!t
NX

1

A+

n
G(kn)

knh
sin µn(h � z)

sin µnh
eikn|x|

�

Z
�!N

�1

i d! e�i!t
NX

1

A�

n
G(kn)

knh
sin µn(h � z)

sin µnh
e�ikn|x|

)

�
W0

2p

Z 0

�!N

+

Z !N

0

�
i d! e�i!t

1X

N+1

G(i�n)

i�nh
sin µn(h � z)

sin µnh
e��n|x|. (4.1)

The envelope factors of the evanescent modes are trivially An ⌘ 1 since they vanish
in the far field. We shall now search for the equation governing A±

n (X, Y), which are
expected to satisfy the initial conditions:

A±

n =

⇢
1, |Y| < `= ✏L,

0, |Y| > `= ✏L,
X = ✏2x ! 0. (4.2)
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Let us take the time-Fourier transform of (2.11) and separate �̄2 into three different
ranges of !, as follows:

�̄2 =

8
><

>:

�̄+

2 , !N <!< 1,

�̄e
2, �!N <!<!N,

�̄�

2 , �!N >!> �1.

(4.3)

In the range of !N <!< 1,

@2�̄+

2

@x2
+
@2�̄+

2

@z2
+
!2

c2
�̄+

2 =�iW0

NX

1


@2A+

n

@Y2
+ 2ikn(sgn x)

@A+

n

@X

�
G(kn,!)

knh
sin µn(h � z)

sin µnh
eikn|x|.

(4.4)
Assuming

�̄+

2 =

NX

n=1

 +

n (!, z)eikn|x|, (4.5)

then

@2 +

n

@z2
+ µ2

n 
+

n = �iW0


@2A+

n

@Y2
+ 2ikn(sgn x)

@A+

n

@X

�
G(kn,!)

knh
Fn(z) (4.6)

subjected to the boundary conditions

 +

n = 0, z = h and
@ +

n

@z
= 0, z = 0, (4.7a,b)

where
Fn =

sin µn(h � z)
sin µnh

, (4.8)

which is an eigen-solution of the homogeneous boundary value problem

@2Fn

@z2
+ µ2

nFn = 0, (4.9)

Fn = 0, z = h, (4.10)
@Fn

@z
= 0, z = 0. (4.11)

For the solvability of  ̄+

n , we substitute the governing conditions of Fn and  ̄+

n in the
following Green’s identity:

Z h

0
dz


Fn

✓
@2 ̄+

n

@z2
+ µ2

n 
+

n

◆
�  ̄+

n

✓
@2Fn

@z2
+ µ2

nFn

◆�
=


Fn
@ +

n

@z
� +

n
@Fn

@z

�h

0
= 0.

(4.12)
The result is the Schrödinger equation for the two-dimensional evolution of the
envelope factor,

@2A+

n

@Y2
+ 2ikn(sgn x)

@A+

n

@X
= 0. (4.13)
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In addition to the initial condition (4.2), we require the waves to vanish far away from
and be symmetric about the central axis,

A+

n = 0, |Y| ! 1, and
@A+

n

@Y
= 0, Y = 0. (4.14a,b)

The initial–boundary value problem for the envelope factor will be solved analytically.
Similarly, the solvability requirement of  ̄�

n leads to the same result for A�

n .
The present approach can be extended to seabeds slowly varying in two horizontal

directions. As shown in appendix B, the approximate envelope equation is similar to
(4.13) but with slowly varying coefficients, and can be solved numerically by methods
for diffusion problems.

5. Envelope solution
Consider the side x > 0 only and abbreviate A+

n by An. By Fourier cosine transform
with respect to Y , Z

1

0
An cos �Y dY = bAn, (5.1)

we get the solution that satisfies the initial condition (4.2),

bAn =
sin � `
�

exp
✓

�
i� 2

2kn
X
◆

. (5.2)

To evaluate the inverse cosine transform, we denote, for brevity,

⌫ =
X
kn

. (5.3)

The inverse is

An(kn, X, Y) =
2
p

Z
1

0
d� cos �Y

⇢
sin � `
�

exp(�i� 2⌫/2)

�

=
1
p

Z
1

0

d�
�

[sin(� (`+ Y)) + sin(� (`� Y))] cos(� 2⌫/2)

�
i
p

Z
1

0

d�
�

[sin(� (`+ Y)) + sin(� (`� Y))] sin(� 2⌫/2). (5.4)

Again, for brevity, we let

X =
⌫

2
=

X
2kn

, 2Y+ = `+ Y, 2Y� = `� Y. (5.5a�c)

Since

1
2

d
dY

Z
1

0

d�
�

cosX� 2 sin 2Y� =

Z
1

0
d� cosX� 2 cos 2Y� =

1
2

r
p

2X

⇢
cos

Y2

X
+ sin

Y2

X

�

(5.6)
and

1
2

d
dY

Z
1

0

d�
�

sinX� 2 sin 2Y� =

Z
1

0
d� sinX� 2 cos 2Y� =

1
2

r
p

2X

⇢
cos

Y2

X
� sin

Y2

X

�
,

(5.7)
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after using known integral formulas (Gradshteyn & Ryzhik 2014, p. 395), it
follows that

Z
1

0

d�
�

cos X� 2 sin 2Y� =

Z Y

0
dY
r

p

2X

⇢
cos

Y2

X
+ sin

Y2

X

�

=
p

2

(
C

 r
2

pX
Y
!

+ S

 r
2

pX
Y
!)

(5.8)

and
Z

1

0

d�
�

sin X� 2 sin 2Y� =

Z Y

0
dY
r

p

2X

⇢
cos

Y2

X
� sin

Y2

X

�

=
p

2

(
C

 r
2

pX
Y
!

� S

 r
2

pX
Y
!)

, (5.9)

where C(z) and S(z) are Fresnel integrals (Abramowitz & Stegun 1964). In summary,
the envelope factor of mode n is given by

An(kn, X, Y) =
1 � i

2

(
C

 r
2

pX
Y+

!
+ C

 r
2

pX
Y�

!)

+
1 + i

2

(
S

 r
2

pX
Y+

!
+ S

 r
2

pX
Y�

!)
. (5.10)

With this result, equation (4.1) is valid for all (x, y) within the range (x 6 O(`✏�2) =

O(L✏�1), y 6 O(`✏�1)).

6. Stationary-phase approximation for large t
We seek the approximation of the propagating part of the bottom pressure,

p = �⇢
W0

p
Re
Z

1

!N

! d!
NX

n=1

An
G(kn,!)

knh
eikn|x|�i!t (6.1)

for large t, fixed x/ct and x > 0. Let the phase of mode n be denoted by gn(!),

gn(!) = kn
x
t

�!, where kn(!) =

p
!2 �!2

n

c
. (6.2)

Since
@gn

@!
=

!p
!2 �!2

n

x
ct

� 1, (6.3)

the point of stationary phase is at !=⌦n where @gn/@!= 0, so that

⌦np
⌦2

n �!2
n

=
ct
x

. (6.4)
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It follows that

⌦n =
!np

1 � (x/ct)2
, (6.5)

⌦2
n �!2

n =!2
n

0

B@
1

1 �

⇣ x
ct

⌘2 � 1

1

CA=!2
n

⇣ x
ct

⌘2

1 �

⇣ x
ct

⌘2 (6.6)

and

@2g
@!2

=
x
ct

 
1p

⌦2
n �!2

n

�
!2

(⌦2
n �!2

n)
3/2

!

=
x
ct
!2 �!2

n �!2

(⌦2
n �!2

n)
3/2

=
�!2

n(x/ct)
(⌦2

n �!2
n)

3/2
< 0. (6.7)

At the point of stationary phase,

kn(⌦n) ⌘ Kn =
1
c

q
⌦2

n �!2
n =

!n

c
x/ctp

1 � (x/ct)2
. (6.8)

Using the known formula of stationary-phase approximation (Erdélyi 1956), the
bottom pressure is

p =
⇢W0

p
Re

NX

1

An(Kn, X, Y)
⌦nG(Kn,⌦n)

Knh

⇥

2

664
2p

t
x
ct

!2
n

(⌦2
n �!2

n)
3/2

3

775

1/2

exp
✓

iKnx � i⌦nt �
ip
4

◆

=
⇢W0

p

NX

1

|An(Kn, X, Y)| ei A
n
⌦nG(Kn,⌦n)

Knh

⇥

2

664
2p

x
c

!2
n

(⌦2
n �!2

n)
3/2

3

775

1/2

cos
⇣

Knx �⌦nt �
p

4

⌘
, (6.9)

where  A
n is the phase of the complex An. It should be stressed that ⌦n and Kn are

functions of x/ct. By taking An = 1, this result is identical to (4.2) in Stiassnie (2010),
which represents the acoustic wave ahead of the gravity wave.

Let us express the far-field pressure as a sum of sinusoidal waves,

p =

NX

n=1

Pn cos
⇣

Knx �⌦nt �
p

4
+ ✓A

n

⌘
, (6.10)
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where Pn is the pressure amplitude of mode n and ✓A
n the phase of An,

Pn =
⇢W0

p
|An(Kn, X, Y)|

G(Kn,⌦n)

h/c
⌦n

(⌦2
n �!2

n)
1/2

✓
2pc
x!2

n

◆1/2

(⌦2
n �!2

n)
3/4

=
⇢W0

p
|An(Kn, X, Y)|

G(Kn,⌦n)

h/c

r
2pc

x
⌦n

!n
(⌦2

n �!2
n)

1/4

=
⇢W0

p
|An(Kn, X, Y)|

G(Kn,⌦n)
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r
2pc

x

⇣
!n

x
ct

⌘1/2

✓
1 �

⇣ x
ct

⌘2
◆3/4 . (6.11)

Since

G(Kn,⌦n) =
4 sin Knb sin⌦nT

Kn⌦n
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4 sin
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(6.12)
we have
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!np

1 � (x/ct)2
T

!
. (6.13)

Finally, the bottom pressure is obtained by combining (6.10) and (6.13). Using these
we can predict the acoustic pressure at any far-field station on the seabed before
the tsunami arrives, provided that the slender fault geometry, location and eruption
duration and speed are all known. Even for post-tsunami analysis of multiple-fault
eruption (see e.g. Hamling et al. 2017), the presented solution can be applied by
linear superposition. Furthermore, the present solution can also be used to estimate
approximately the fault parameters by an inverse approach, as briefly addressed in § 8.

7. Numerical example and discussion
To assess the propagation of sound signals from slender faults quantitatively, we

solved the envelope and pressure equations (5.10) and (6.13) numerically. As a sample
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FIGURE 2. (Colour online) (a) Plot of |A1| versus y and t at x = 2000 km. (b) Black and
grey curves correspond to t = 4000 s and t = 10 000 s, respectively.

input, we chose a fault of medium size of half-length L = 400 km and half-width
b = 40 km, with eruption duration T = 10 s and bottom uplift 1 m (W0 = 0.1 m s�1).
The water depth is h = 4 km, the speed of sound in water c = 1500 m s�1 and water
density ⇢= 1000 kg m�3. The chosen parameters correspond to a small earthquake, as
in the 2016 MW = 7.8 Kaikōura earthquake, New Zealand (Hamling et al. 2017). The
choice of h=4 km is appropriate both for the 2004 Boxing Day tsunami and the 1960
Chilean tsunami (Kadri & Stiassnie 2012). Note that in both cases the tsunami front
propagates at a speed of approximately 200 m s�1, which is far below the acoustic
wave, as highlighted above.

The envelope |A1(Kn, X, Y)| initially mimics the fault dislocation of top-hat form,
but spreads laterally in time (figures 2 and 3). Owing to the properties of the Fresnel
integrals, |An| is oscillatory in X and Y . Moreover, the well-known conservation
identity derivable from the Schrödinger equation (4.13),

@

@X

Z
1

�1

|An|
2 dY = 0, (7.1)

dictates that lateral decay is compensated by the growth along the centreline. Thus
the amplitude |An| near y = 0 can exceed the initial value of 1. In the case of A2,
the profile at any x becomes closer to the top-hat form, as demonstrated in figures 4
and 5. This is because, for finite x/ct, K2 is dominated by !2/c = 3/2h, which is large.
This makes X/kn = X/Kn in (5.2) small and

bAn ⇡
sin ↵`
↵

, (7.2)
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FIGURE 3. (Colour online) (a) Plot of |A1| versus y and t at x = 6000 km. (b) Black and
grey curves correspond to t = 4000 s and t = 10 000 s, respectively.
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FIGURE 4. (Colour online) (a) Plot of |A2| versus y and t at x = 2000 km. (b) Black and
grey curves correspond to t = 4000 s and t = 10 000 s, respectively.
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FIGURE 5. (Colour online) (a) Plot of |A2| versus y and t at x = 6000 km. (b) Black and
grey curves correspond to t = 4000 s and t = 10 000 s, respectively.

whose inverse transform An(X, Y) is approximately of the initial top-hat profile. As
such, higher modes are expected to retain their initial shape for larger distances and
longer time. In addition, the evolution may result in temporary local amplification.
Note, however, that it can be shown analytically from (5.10) that, for constant x/ct
(hence Kn), An vanishes as (X, |Y|) ! 1.

In figures 6 and 7 we show the bottom pressure at different lateral stations along
the same lines x = 1000 km and x = 4000 km. The upward thrust at the fault is
assumed to have the speed 0.1 m s�1. For comparison, the results of an infinitely
long fault according to (6.10) and (6.13) with An = 1 are also shown. At the distance
x = 1000 km, the pressures at the centreline (y = 0) by the two theories are virtually
the same up to t = 3700 s. Significantly lower pressure is evident for the slender
fault for all t < 3700 s. The difference increases with the distance away from
the centreline. At the greater distance of x = 4000 km, the drop of the bottom
pressure due to the finite fault length is evident after t = 4000 s at the centreline
station. Away from the centreline, the bottom pressure diminishes even more rapidly
for the slender fault.

In a shallower ocean with depth h less than 4 km, the tsunami advances at a lower
speed

p
gh, hence trails behind the acoustic wave front even more. Quantitatively the

modal frequencies and modal wavelengths are also reduced. The overall behaviour
should remain qualitatively similar.

8. Inverse estimation of fault parameters
We now extend the inverse approach of Hendin & Stiassnie (2013), originally

devised for a circular fault, to retrieve the main properties of a slender fault by
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FIGURE 6. Variation of bottom pressure in 500 < t < 4000 s at x = 1000 km, for y =

0, 500, 1000 km. Black, slender fault; grey, infinitely long fault.

analysing the pressure recordings available from hydrophones. In particular, we wish
to estimate approximately the epicentre coordinates (x0, y0) relative to one of the
hydrophones, orientation relative to the north (see figure 8), fault half-length L
and half-width b, eruption time t0 (relative to a recorded time t̂) and duration T .
Practically, hydrophone monitoring stations must comprise an array of underwater
hydrophones, located at a distance of the order of a kilometre from each other. From
wavelet energy entropy considerations and time differences of the arriving signals, the
direction (known as bearing) of the epicentre relative to the station can be calculated
(see e.g. Wu & Wei 2013). With the bearing at hand, data from a single hydrophone
are sufficient to obtain the fault properties, as recently demonstrated by Kadri et al.
(2017). Although from available seismic sensors the epicentre could be calculated
well before the hydro-acoustic signals arrive at the hydrophone station, an alternative
estimate can help minimize the uncertainties.

8.1. Eruption time and epicentre location and fault orientation
For simplicity, we consider only the first mode n = 1 as in Hendin & Stiassnie (2013),
and denote quantities obtained from the recordings at the hydrophone by a circumflex.
Namely, b⌦t̂j is the measured frequency at the selected instant t̂j, where j = 1, 2, . . ..
Now we can rewrite (6.5) in terms of the measured quantities

b⌦t̂j =
pc

2h
p

1 � [x0/c(t̂j � t0)]2
, j = 1, 2, . . . , (8.1)
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FIGURE 7. Variation of bottom pressure in 2500 < t < 6000 s at x = 4000 km, for y =

0, 500, 1000 km. Black, slender fault; grey, infinitely long fault.

x
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N

Hydrophone

FIGURE 8. (Colour online) Location and orientation of a slender fault relative
to a hydrophone.

where t0 denotes the starting time of eruption. By considering just two different
instants t̂1 and t̂2, we can solve for x0 and t0 explicitly:

x0 =
(t̂2 � t̂1)c

{1 � [pc/(2h b⌦t̂2)]
2}�1/2 � {1 � [pc/(2h b⌦t̂1)]

2}�1/2
(8.2)
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Fault parameters Actual (input) Calculated (inverse)

Initial eruption time, t0 (s) 0 5.739
Eruption duration, T (s) 10 9.724
Uplift velocity, W0 (m s�1) 0.1 0.104
Fault half-length, L (km) 400 414
Fault half-width, b (km) 40 42

TABLE 2. Fault parameters for the case studied in § 7.

and

t0 = t̂j �
x0

c

8
<

:1 �

"
pc

2h b⌦t̂j

#2
9
=

;

�1/2

, j = 1 or 2. (8.3)

If (x0, y0) is known from seismic recordings, t0 is found at once from (8.3). Otherwise
x0 can be calculated from hydrophone records according to (8.2), and then t0 from
(8.3). If only the distance r0 between the epicentre and hydrophone is known from the
seismic recordings, the calculated x0 can be used to get y0 =

p
r2

0 � x2
0. For simplicity

this is assumed in the present example, with the prescribed value r0 = 10 000 km.
If seismic information is not available at all, y0 can be estimated by employing the
acoustic recordings of the pressure amplitude together with the remaining parameters,
as noted at the end of § 8.2.

Once (x0, y0) is found, the orientation of the slender fault relative to the north ✓
can be calculated from figure 8,

✓ = 90�
� tan�1(x0/y0). (8.4)

For the prescribed distance from the fault centre to the hydrophone r0 = 10 000 km,
we find x0 = 9994 km, y0 = 341 km, ✓ = 1.95� and t0 = 5.739 s.

8.2. Fault length, width, duration and rising speed
Finally, we employ (6.13) for n = 1 only to approximate the measured bottom pressure

bP1(t̂j) = ⇢W0|A1(K1, X, Y)|
27/2Cq

p3x0k( b⌦t̂j)
sin[k( b⌦t̂j)b] sin( b⌦t̂jT). (8.5)

With y0 known, four unknowns remain: L, b, W0, T . Choosing four different time
instants t̂j, j=1,2,3, 4, we get four calculated bP1(t̂j), which are taken as the measured
amplitudes. Since bP1(t̂j) is a function of W0, b, T and L through |A1|, these four
amplitudes comprise four algebraic equations for the four unknowns, and are solved
numerically. In table 2 the direct input and calculated fault parameters are compared
for the case in § 7. Better accuracy is possible by more elaborate computations using
more modes. If r0 is not known from seismic records, one can evaluate bP1 at another
time instant t̂5 to get an additional equation, and then solve for y1 and the four other
parameters from five equations.
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9. Conclusion
Making use of the sharp difference between the speeds of sound and of gravity

waves, we have developed a simple analytical theory based on linearized acoustics
excluding the gravity wave effect. By further focusing on slender faults, which are
quite common in nature, an explicit theory is worked out by employing the asymptotic
method of multiple scales. The effects of two-dimensional trans-ocean propagation are
worked out for large time and long distances. By following the approximate approach
of Hendin & Stiassnie (2013), we have demonstrated that our direct theory facilitates
the inverse estimates of fault properties (location, dimension, duration, orientation,
etc.) from pressure measurements at one hydrophone. For helping the design of
acoustic sensing systems for early warning of tsunamis, it is necessary to account for
the scattering of sound by wind-induced surface waves, coastline geometry, seabed
topography and dissipation in water and along the seabed, etc. We hope that the
present asymptotic approach can be extended to expedite practical computational
modelling.

Appendix A. Inverse transform of I
We rewrite (3.7) as

�0 = �
W0

2p2p

Z
1

�1

d! e�i!t
Z

1

�1

dk eikx G
µ

sin µ(h � z)
cos µh

= �
W0

2p

Z
1

�1

i d! e�i!t
⇢

1
2pi

Z
1

�1

dk eikx G
µ

sin µ(h � z)
cos µh

�

= �
W0

2p

Z
1

�1

i d! e�i!tI(x, z,!), (A 1)

where I is the k integral

I(x, z,!) =
1

2pi

Z
1

�1

dk eikx G
µ

sin µ(h � z)
cos µh

. (A 2)

The integrand has poles at the zeros of cos µh:

cos µh = 0, µ = ±µn = ±

✓
n �

1
2

◆
p

h
, µ1 < µ2 < µ3 < · · · . (A 3a,b)

To facilitate the indentation of the path of integration in the complex k-plane, we apply
the method of Rayleigh damping and replace ! by !0 =!+ i�0, where �0 >0 is a small
and positive number, which will be set to zero in the limit. Thus

µ =

s
!02

c2
� k2, (A 4)

k = ±

s
!02

c2
� µ2. (A 5)

We define !n by

µn =

✓
n �

1
2

◆
p

h
⌘
!n

c
, (A 6)
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and consider the following two possibilities. (i) If !2 >!2
N , 2N complex poles,

k = ±k0

n, n = 1, 2, 3, . . . , N, (A 7)

exist in the k-plane, where

k0

n =

p
(!+ i�0)2 �!2

n

c
⇡ kn + i

�!

c2(!2 �!2
n)

, (A 8)

with k1 > k2 > · · · > kN . Because of the Rayleigh damping factor µ, +k0

n is slightly
above the real k axis (the path of integration) if ! > 0, and slightly below the real
axis if !< 0. On the other hand, �k0

n is slightly below the real k axis if !> 0, and
slightly above the real axis if !< 0. (ii) If !2 <!2

N , 2 ⇥ 1 imaginary poles exist in
the k-plane,

k = ±i�n, n = N + 1, N + 2, . . . , �N+1 < �N+2 < · · · , if !2 <!2
N, (A 9)

where

�n =

p
!2

n �!2

C
. (A 10)

Let us first break the ! integral in (A 1):

�0 = �
W0

2p

⇢Z
�!N

�1

+

Z
1

!N

�
i d! e�i!t

⇢
1

2pi

Z
1

�1

dk eikx G
µ

sin µ(h � z)
cos µh

�

�
W0

2p

⇢Z !N

�!N

�
i d! e�i!t

⇢
1

2pi

Z
1

�1

dk eikx G
µ

sin µ(h � z)
cos µh

�

= �
W0

2p

⇢Z
�!N

�1

+

Z
1

!N

�
i d! e�i!tI(x, z,!) �

1
2p

⇢Z !N

�!N

�
i d! e�i!tI(x, z,!)

= �
W0

2p
(I+ + I� + Ie) , (A 11)

where

(I+, I�, Ie) =

✓Z
1

!N

,

Z
�!N

�1

,

Z !N

�!N

◆
i d! e�i!tI(x, z,!). (A 12)

Next, we take the limit �0 ! 0+. For I+ we indent the path of k integration below
the poles k0

n on the positive real side of the k-plane and above the poles �k0

n on
the negative real side of the k-plane. The anticlockwise contour is closed by a large
semicircle in the upper k-plane. We get from the residues

I+ =

NX

n=1

G(k0

n)

µn

sin µn(h � z)
@ cos µh
@k

����
k0

n

eik0
n|x| =

NX

1

G(kn)

knh
sin µn(h � z)

sin µnh
eikn|x|, (A 13)

which gives outgoing waves with e�i!t.
For I� we indent the path below �k0

n on the negative real side of the k-plane and
above k0

n. By closing the indented path by an anticlockwise contour of a semicircle
in the upper k-plane, we get from all �k0

n the residues

I� =

NX

1

G(�kn)

�knh
sin µn(h � z)

sin µnh
e�ikn|x| = �

NX

1

G(kn)

knh
sin µn(h � z)

sin µnh
e�ikn|x|, (A 14)
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which gives outgoing waves with ei!t. Use is made of G(�kn)/(�kn) = �G(kn)/kn.
Finally for Ie we close the anticlockwise contour in the upper half k-plane. From

the positive imaginary poles, we get

Ie =

1X

N+1

G(i�n)

i�nh
sin µn(h � z)

sin µnh
e��n|x|, (A 15)

where
G(i�n)

i�nh
=

4 sin i�nb sin!T
i�nh!i�nh

=
4 sinh �nb sin!T
�nh!i�nh

= imaginary, (A 16)

and Ie represents the evanescent modes.
In summary

�0 = �
W0

2p

(Z
1

!N

i d! e�i!t
NX

1

G(kn)

knh
sin µn(h � z)

sin µnh
eikn|x|

�

Z
�!N

�1

i d! e�i!t
NX

1

G(kn)

knh
sin µn(h � z)

sin µnh
e�ikn|x|

)

�
W0

2p

Z 0

�!N

+

Z !N

0

�
i d! e�i!t

1X

N+1

G(i�n)

i�nh
sin µn(h � z)

sin µnh
e��n|x|, (A 17)

which can be further simplified to

�0 = �
W0

p
Re
Z

1

!N

i d! e�i!t
NX

1

G(kn,!)

knh
sin µn(h � z)

sin µnh
eikn|x|

�
W0

p

Z !N

0
d! cos(!t)

1X

N+1

G(�n,!)

�nh
sin µn(h � z)

sin µnh
e��n|x|. (A 18)

The bottom pressure is

p = �⇢
@�0

@t

����
z=0

= �
W0

p
Re
Z

1

!N

! d! e�i!t
NX

1

G(kn,!)

knh
eikn|x|

+
W0

p

Z !N

0
! d! sin(!t)

1X

N+1

G(�n,!)

�nh
e��n|x|. (A 19)

Appendix B. Envelope equation for slowly varying sea depth
Let the uneven sea depth H change very slowly in both horizontal directions

according to H(X, y2) where X = ✏2x and y2 = ✏2y. By switching the coordinate
system from x, y, z to x, y, z0, the sea layer becomes �H(X, y2) < z0 < 0. The
leading-order results in §§ 3 and 4 and appendix A remain valid if h is replaced by
H and h � z by z0. Now (2.13) must be replaced by

@�2

@z0
= �

@H
@X

@�0

@x
, z0

= �H. (B 1)
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Since @�0/@y = 0, the term (@H/@y2)(@�0/@y) = 0. The y2 dependence of H does
not enter the seabed boundary condition explicitly up to the present order. Finally
solvability of the order O(✏2) problem leads to the envelope equation

2ikn
@An

@X
+ i(2kn sin2 µnH)

✓
1
H
@H
@X

◆
An +

@2An

@Y2
= 0. (B 2)

For given H(X, y2), this modified Schrödinger equation can be conveniently solved by
any numerical method for the diffusion equation.
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