DATA BUOY COOPERATION PANEL (DBCP)

FORMAT FOR NATIONAL REPORTS ON CURRENT AND PLANNED BUOY PROGRAMMES

Country	Russian Federation	
Year	2021	

Please Identify your Programme's Major Opportunities and Challenges/Risks during the upcoming year and how DBCP can most effectively assist your Programme.

1. CURRENT PROGRAMME:

Please Identify your Programme's Major Opportunities and Challenges/Risks during the upcoming year and how DBCP may assist your Programme.

Agency or programme			
Number and type of buoys	 (a) deployed during the year (since 5 Sept 2020) (b) operational as of 08 Aug 2021 (c) reporting on GTS as of 31 August 	15 SVP-B/40H (9 iceST- B/40, 6 SVP-B/40H) 8 SVP-B/40H 8 SVP-B/40H	
Purpose of programme	(a) operational	[x]	
(check/uncheck boxes using []	(b) met / ocean research	[x]	
or [x] as appropriate)	(c) developmental	[x]	
Main deployment areas			
Vandalism incidents	(a) Number of incidents 0		
	If vandalism incidents have occurred provide the details using the form in the	• • •	

(repeat table above as often as necessary)

2. <u>PLANNED PROGRAMMES:</u>

Agency or programme		
Number and type of buoys	planned for deployment in the next 12 months	10-30 SVP-B/40H
Purpose of programme	(a) operational	[x]
(check/uncheck boxes using [_]	(b) met / ocean research	[x]
or [x] as appropriate)	(c) developmental	[x]
Main deployment areas	Arctic Ocean (METAREAs XX, XXI)	

(repeat table above as often as necessary)

3. <u>TECHNICAL DEVELOPMENTS:</u>

(a) Buoy design	 Lagrangian SVP-B/40H, Marlin-Yug Ltd Lagrangian iceBTC2(5)/40-11T0P, Marlin-Yug Ltd
(b) Instrumentation	 surface air pressure surface ice/snow/water temperature surface air temperature GPS positioning Sea surface layer / ice temperature profile 200-500 cm

4. <u>PUBLICATIONS (on programme plans, technical developments, QC reports, etc.):</u>

Ref	Title	<i>Type</i> ¹
1	Tolstosheev, A.P., Lunev, E.G., Motyzhev, S.V. and Dykman, V.Z., 2021. Seawater Salinity Estimating Module Based on the Sound Velocity Measurements. Physical Oceanography, [e-journal] 28(1), pp. 122-131. doi:10.22449/1573-160X-2021-1-122-131	(3) Instrumentation
2	Life of a Research Buoy – An Arctic Buoy Story. Interview with Thomas Rackow, Daniel Watkins and Vasily Smolyanitsky. October 2021:. <u>PolarPredictNews #19</u>	(2) Operations, (8) Other
3	Smolyanitsky V.M., Petrovsky T.V., Smirnov K.G., Sokolov V.T Results of developing network of meteorological drifting buoys in the Eurasian Artic in 2018-2020 (in Russian: Результаты поддержки сети метеорологических дрейфующих буев в Евразийской Арктике в 2018–2020 годах// <u>Russian Polar Studies</u> vol.1, 2021.	(2) Operations, (8) Other

(repeat rows in the table above as necessary)5. ADDITIONAL COMMENTS:

(a) Quality of buoy data	Regular QC provided by AARI and manufacturer
	• Regular QC by Eumetnet
(b) Communications	• ARGOS
	• Iridium
(c) Buoy lifetimes	• Maximum 721 days (with SLP channel closed), 419 days fully
	functional
	• 2 days minimum (broken by ice)
	• 234 median lifetimes
	• Lifetime greatly depends a) whether or not the buoy will
	survive freeze-up or/and approaching ice edge with high
	dynamics b) time spent under uniform conditions (open water
	or level ice or coast)
(d) Data Accessibility ²	WMO GTS
	• <u>IABP data portal</u>
	<u>AARI drifting buoys data portal</u>
(e) New Observations ³	• Filling gaps in synoptic measurements in Eurasian Arctic
	• Test of thermistor strings / assessment of snow/ice/ocean termal
$(\Phi, CECS and WICOS^4)$	flux Summert for VOPD 214 SOD (MOSA (C) and TOD
(f) GFCS and WIGOS ⁴	Support for YOPP 3 rd SOP (MOSAiC) and TOP
(g) Additional Requirements ⁵	• None
(h) DBCP Linkages ⁶	• Improved accuracy of nowcast/forecast products for Eurasian
	Arctic
(i) Contribution to UN Decade	• Surface currents, ice drift patterns and thermal fluxes in the
and UN SDGs ⁷	surface layer in Eurasian Seas in present day Arctic

¹: Types of publications: (1) Implementation, (2) Operations, (3) Instrumentation, (4) Quality Management, (5) Data Management, (6) Data collection and/or location, (7) Data use, (8) Other

² How does the international community access the ocean observing data provided by your Organization

³ What new ocean observations does your Organization plan to make in the upcoming year (i.e. new parameters, expanding geographic scope, filling spatial or latency gaps)?

⁴ How do your Organization's observations contribute to the WMO's Integrated Global Observing System (WIGOS) and/or Global Framework for Climate Services (GFCS)?

⁵ What additional requirements (other than climate) does your organization have that are currently not adequately addressed by the DBCP?

⁶ How would your organization benefit from DBCP's closer linkages to the Global Ocean Observing System(GOOS), Data Management and Modelling Communities?

⁷How do your ocean observing networks contributing to the UN decade on Ocean Science and UN Sustainable Development Gloas .

(j) Other (i.e. Impact of COVID19 on observing	As in 2020 all 2021 deployments shifted to August 2021 and further
systems and mitigation efforts)	